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DIFFERENCE METHODS FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS

Heinz-Otto Kreiss

1. Introduction.

One of the simplest examples of a stiff differential equation is

the scalar equation

(1. 1) dy/dt;a“y+bedt, y(O):yO,tZO.

Here al X b,d are complex valued constants with a = Real all < 0 and
Real d < 0. Also falll > 1 but b/all and d are of moderate

size. A typical example is given by a11 = -104, b/a11 =1, d = i.

The expression 'of moderate size'' is rather vague. It depends on the
stepsize k one wants to employ in a numerical calculation. Often it

is satisfactory to say that K is a constant of moderate size if Kk <0.1.

The solution of (1.1) is given by

where .

b dt A I -
y (t) = - T YAt Slye  OF . 1
11 Bl

Thus the solution consists of the forced solution yl(t) and the transient
solution yz(t). The forced solution is smooth and varies slowly. For

the transient solution we have two fundamentally different situations.
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1) a = Real a << -1. In this case yz(t) decays rapidly. Outside
a boundary layer of order &( la l—l |log lal ,) we can neglect yz(t). |

! 2) Real a“ is of moderate size. Now yz(t) oscillates rapidly

but does not decay quickly. We shall not treat that case.

This division of the solution into a slowly and a rapidly varying
part is typical. Let us consider a general system with constant coefficients ;
(1.2) dy/dt = Ay + F(t), y(0) = Yo t>0,

(1) (n)

where ¥ =y ", ¥ )& ‘and F:(F(”

4 s F(n))’ b are vector

functions with n components and A is a constant n Xn matrix. We

shall make

Assumption 1.1. The eigenvalues xj of A can be divided into

two sets M M

1’
) A, € M| if Real << -l and |Imxj|§p|Realxj|.
1
: A
2) x € M, if Ixji_zc

Here p, C are constants of moderate size.
We need also the following concepts:

Definition 1.1. A matrix function A = A(t), t >0

l)If y is a vector then y' denotes itf transpose and y its adjoint. The .
vector norm is defined by |y = max i) Similar notations hold for
matrices, for example [Al = sup [Ay /Iyl-

Y




p of moderate size

is called negative dominant if there is a constant

such that forall t >0

(1.3} llma.lf_—leeala,.l, =R e 11
11 i

and a constant & with 0 <& <1 such that forall t>0
e |

(1. 4) Real a , < -l, L la”l <-(l-8) Reala,, i=12...,n.

J:
1#)
It is called essentially negative dominant if (1. 3), (1.4) are replaced by

|Im a,.l = P‘Real a, | +c
ii ii

(1. 3a)
(1.4a) Real aii <c
n -(1 - ¢) Real aii + ¢ if Real aii <0
(1. 4b) Lolmg ks
j=1, j#i . ¢ - Real a,, if Real a,, >0
ii ii
where c¢ is a constant of moderate size.

It is well known that there is a transformation S such that the
matrix A of the system (1.2) can be transformed to

(1.5) A=8tag-f M s
0 2z
where the eigenvalues of Aii belong to Mi’ i=1,2. A11 is negative

dominant and |A22| < 2c. Without restriction we can assume that A

is already in blockdiagonal form (1.5), i.e. (I. 2) can be written as

yI A 0 yI PI
(1. 6) X1 = 1 +
; dt| II II 11
y 0 A22 y 1%




F'———.———-—-———_L

Of course, we cannot guarantee that [S]| + IS-1 | is of moderate
size. However, if this expression is large then the original dependent
variables y had not been correctly choosen and we can consider S
as a scaling of y. In the next section we are going to prove

Theorem 1.}). The solution of (1.6) can be written in the form

y(t) = yg(t) + v(t) .

-1.1
Here ys(t) and its derivatives can be estimated by AliF : AZZ’ FII
and their derivatives. v(t) is a solution of the homogenous system (1.6)
with initial values

I

vi(0) = y'(0) - ¥} o

5(0), v (0) = 0.

By assumption the eigenvalues \J of A11 have the property that
Real x}, <« -1. Therefore v(t) decays rapidly and, outside a boundary
layer, the solution y of (l.6) is as smooth as ys(t).

The last theorem is a special case of the following theorem for systems

(1.7) dy/dt = A(t)y + F(t), t>0,

with variable coefficients. (See also [2].) {

Theorem 1.2. Consider the system (1.7) and assume that A is
essentially negative dominant. Then the solutions of (1.7) can be written

in the form

y(t) = yglt) +v(1),

where ys(t) and its first p derivatives can be estimated by G, 65 p and |

the functions




(1)

=1 y i
(1.8) mm(fa“( ,I}d‘an/dtv, min(fanl l,I}dVF /dt’, v =0,1,2,...,p.
v(t) 1s the solution of the homogenous equation
(1.9) dv/dt = A(t)v, v(0) = y(0) - yS(O) ,

which away from a boundary layer has the same smoothness properties
as yS(t).

Assume that the functions (l.8) are of moderate size. Then the
boundary layer can always be resolved by making a logarithmic stretching
of the independent variable t. If we do this, the solutions of (1.7) will
be smooth everywhere.

It should be pointed out, that we do not make any assumption that
the number of ''large'' eigenvalues of A is constant. Thus we are able
to treat turningpoints.

One might think that the conditions of Theorem 1.2 are too restrictive.
We shall give three examples which show that this is not so. In all

these examples & >0 denotes a small constant and t > -1.

1) Consider the system

0 0
£ ay _ y
= 7
dt a21 aZZ
where
1 for =1 2t<0 -1 for -1<t<0
8., = 2 oA Lt) = i
< et/e for t >0, & —et/e for t >0 .




An easy calculation gives us

and
y“)(-l) % e_(tﬂ)/e(y(z)(-l) - y(l)(-l)) for ~-1<t<90,
(2)
(t) =
tNe ) 2 &
T):e. 'g e ol(t, n)-n dny(l)(—l) e U(tyo)y(z)(o) for t>0,
where

t
sk e *%3e, 1.6 0Ralt,m =) -
q'\[&

2
Thus y( )(t) changes rapidly in a neighbourhood of t = 0 and becomes

of order G(&:.I/Z ly“)(-l) |} for t>0.

Y(Z)

where




Now y(t) = (1,0)" for t 0 and converges rapidly to zero for t > G(Ng).
Observe that the coefficients a1J or ai_Jldaij/dt are bounded.
Thus the diagonal dominance of A 1is important.
3) One might think that one has only to control the eigenvalues of
A and their variation to be sure that the solution of the differential

equations is of moderate size and smooth. This is not so. Consider

the system

. vy Ult)y = Alt)y, y(0) =y

€ at 0’

where n >0 1is a constant and
cos at sin at
u(t) = , a = const.,
-sin at cos at
is a unitary transformation. Let v = Uy denote new dependent variables.

Then v 1is the solution of

1 I VAR 2
= v = Bv .
a -1

dv
t

Q.

This is a system with constant coefficients and its general solution

has the form

Here xj are the eigenvalues and lj are the corresponding eigenvectors
~ -2
of B. Aslong as a(n/e - a) <eg the solutions of the system decay

exponentially. However, if a(n/e - a) > e‘z then there is one




exponentially increasing and one exponentially decreasing solution.

This happens, for example, if a = 2, n = e-l > 2. Observe, that
the eigenvalues of A(t) are constant and that U(t) is a slow rotation.

The above examples show that one needs to be cautious when
solving stiff systems. It is, of course, not necessary that the system
(1.7) be essentially diagonally dominant. It is sufficient that one can
transform it to this normal form. In section three we shall show that
this is always possible using an adequate stretching of the independent
variables.

We shall now discuss difference approximations. We divide the
t-axis into subintervals of length k, define gridpoints tv = wk,
v=20,1,2,... and denote by v @ u(tv) vector functions defined on
the grid. We approximate (I.7) by a multistep-method which is generated

from an identity

r
(1.10) j_}_il ay(t, )+ kpdy(t, )/dt = kult,),
where
(1.11) Wt ) = o(k" " 'd"y/at)

denotes the truncation error. Observe that (1.10) has nothing to do with
the differential equation. It is valid for all sufficiently smooth functions.
Only when we replace dy/dt by Ay + F the differential equation enters

and we obtain the corresponding multistep-method,




(1.12) L{u)= ) (al +kpA(t,_Du,_ = kG, G, =~ pE(t,_) -
j==i '

(1.12) can also be written as

(o 1 F B A M s ) (a1 4 kp At ), + kG

-1 +1° vl = i v=j v’

)

We assume that « , =1 andthat B ., < 0. Then (a I+ kﬁ_lA(t

-1 -1 - -1 v+l

exists if the eigenvalues X of A satisfy the inequality

kp lReal\ = =l
Now the solution of (1.12) is uniquely determined if we specify initial values

u =y +e, le | =6k
B H H b

The approximation is only useful if it is stable. However, here we
cannot define stability by describing the behavior of a method as k — 0,
because we want to use it in the case that kJ'A] >> 1. Instead we
consider classes % of problems (1.7), and define uniform stability.

Let © be a domain in the complex plane with the following properties

1) There is a constant C, (of moderate size) such that z € Q

1

and Real z >0 implies lz| < G

oo l'
2) If ze Q thenalso oz e Q forallreals with 0 <o <.
We shall consider the class %(Q) defined by

Definition 1.2. 7(Q) = 7(2, ¢, p, 5,K) denotes the class of problems

(1.7) where A is essentially negative dominant, the functions (1. 8) are
bounded by a constant K (of moderate size) for p =1 and the eigenvalues

x of A belong to .




Stability is defined almost as usual. We assume that one can solve
(1.12) for uvrl boundedly and that the solutions of (1.12) increase at
most slowly. The only difference is that all the constants involved are

independent of the particular problem but hold for the whole class.

Definition 1. 3. Consider a class % of problems (1.7). A multi-

step-method (l.12) is stable for the class if there are constants KJ, KS’ Yg

and k\O) >0 such that for all problems in %, all t, andall k

Wi 0 < k <
with < k s kO

(1.13) l(a_ 1+ ka_lA(t))'lI <K

1 I

and the solution of the homogenous equation

r\
(1.14 vl 2} I+kpAt | =0
) [v] i (e 3 (V—]))vv-]
==l
satisfy the estimate
Valtl =t ¥
z 5 u v
) < >
(1.15) lv(t“)l <Kge jéo lv(tv_j)l, ]

Already G. Dahlquist [1] has defined the stability for classes of

problems. He considered the class 720 of all scalar equations

‘ (1.16) dy/dt = Ay, N\ = const. Real A <0,

and proved that the trapozoidal rule is the 'best method' (method of the highest
order with the smallest coefficient of the truncation error) which
is stable for the class ?70. Later O. Widlund [ 8] introduced the class

'rl = Wl(p) of all scalar equations (1.16) where \ satisfies the condition

i (=




(1.17) Real A <0, |Im A| < p|Real A[,
and showed that there are methods of higher order than two which are
stable for such a class. There are now a large number of stable methods
available. See for example [ 5], [9]. More generally, one can
consider classes 7(2) of scalar equations (1.16) where X\ belongs
to a domain € of the above type.

We consider now the approximation (1.12) for the class 7(2). In

this case the solutions can be given explicitly. They are of the form
N
(1.18) u =2, P (v
where the « are the solutions of the characteristic equation
v

(a}, SF )\kﬁj)xr-) =0

=d=

(1.19)

==
and the P}l are polynomials in v  of order one less than the multiplicity
of K“. We make the following

Assumption 1. 2. 1) The approximation (1.12) is stable in a neighbour-
hood of Ak = 0 which means:

a) For Xk = 0 the solutions of (1.19) satisfy the condition
(1.20) !K“(O)l L1, le(O)' = 1 then its multiplicity is one .

b) No weak instability occurs, i.e. in a neighbourhood of Ak =0

the solutions Kp(xk) with le(o)l - 1 are of the form

(1. 21) « (\k) = « (0)(1 +g k) + 0Ak)®> with g >0.
m m m m

-]l




2) The approximation is stable in a neighbourhood of Ak = %.

(Dividing (1.19) by Ak we can consider its solutions as functions of
=1 ! : . . :
(Ak) and the stability is defined in the same way as above.)

3) Let dl’dz with 0 < d1 < d2 < w be constants and denote by

Q the domain
d
dl’ 2
Z(Qd’d if Real z <0 and dljlzif_dz.
T2
If Xk e Q N Q then the solutions « of (1.19) satisfy
d,d "
}* =2
(1.22) lx I <] -7, T >0 a constant depending on dl’dZ .
08

Remark. The last condition is often strengthened to:

For every fixed dl > 0 there is a constant T such that (1.22)

holds for all dz. In this case we call the method strongly stable.

As an example we consider methods which are generated from the
identity

(1.23) . )~ okdy(tvﬂ)/dt = y(t)) + (1 - o)dy(t )/dt + ku(t ),

v+l

where ¢ is a constant. (l.23) leads to the approximations

1l +k(l = o)A

uv+l = 1= kok 9

which are unstable for any class Wl(p) L O <El; stable, but not

and strongly stable if o > L .

strongly stable, if ¢ = >

2
Now consider a class ¥ of problems

dy/dt = A(t)y + F

~12-




and assume that the class is such that the eigenvalues \(t) of every A
belong to a set . Approximate these problems by a multistep-method
which is stable for the class 7(2). The main question which we want
to discuss in Section 4 is whether the multistep-method is also stable
for the class ¥. In this generality the answer is no, as we shall
demonstrate now.

Consider our third example, i.e.
(1. 24) e & . U*(t) % é U(t)y = A(t)y,

0 -1

and approximate it by the multistep-method generated by (1. 23) with

g > %, 1.€.
(1.25) (I- koA(tV“))uw1 = (I +k(1- U)A(tv))uv

Introduce into (l.25) new variables w = Uu. Then we obtain a system

with constant coefficients

(1. 26) Woa = Bwv
where
-1
-1 n cos ak sin ak =1 n
B=|1-%£ 4 " I+(1=o)k, =
€ \o -1 -sin ak cos ak 0 -1
vV v
B o Ne  A-e)
I+ak + 6(ak) ’
0 1 -1 0 0 i
with

Skl ekl (oo Gk, )

€

=] 3=




(1.26) is an approximation of the homogenous system
dv ~1 n - at =)
@€ -1
and we know that the solutions of (1.27) decay exponentially as long as
gan = T <1. We shall now consider three cases.

1} & = e << k. A somewhat tedious calculation shows that

1
2 ’

eigenvalues « of B are approximatively given by

If «a>0 and ¢ = :i‘akz then we get for the negative root

k= -1+ak(l-n~N2n-1),
and Ikl >1 for n > 1. Thus the approximation has an exponential
increasing solution, though the solution of the differential equation decays
as long as n <l/ea = 4/a2k2. Furthermore the increasing exponential
solution can grow arbitrary fast and therefore the method is not stable
for the class of problems of type (1.24).

2) o =1, ¢ <<k. Now we get

:l:'\.‘“l‘l".2 T = gan .

4 ’

Al
~

K

(SR

If ITI <1 the method is stable. However, if T < -1, then the method
is not stable though the solutions of the differential equations decay
exponentially as t » . (n = G(e-l) and the matrix B is far from

being negative dominant.)

_14_




1 ) )
3) 'Z <g < ], € << k. In this case the approximation has an
exponentially increasing solution for ff:aqf > TO where TO is some

constant with 0 < TO < 1. Again the matrix B 1is far from being

negative dominant.
In some sense the most disturbing result is the effect on the trapezoidal

rule (o = ) because the difference approximation has exponential

1
2

increasing solutions for examples which cannot be considered pathological
at all. This kind of behavior is typical for methods which are only stable
and not strongly stable for a class 7().

The last example shows that one cannot decide the stability of a
method for a given class of problems by just looking at scalar equations.
One has to impose other conditions. The main result of Section 4 is

Theorem 1.3. Consider a class 7(2) and assume that the
approximation (1.12) satisfies assumption 1. 2 for the corresponding class
7(22). Then it is stable for the class 7(R).

We shall now derive error estimates. Consider the problem (1.7)

and assume that it has a smooth solution y(t), 1i.e. a number of its

derivatives are of moderate size. If the conditions of theorem 1.2 are
fulfilled and the functions (l.8) are of moderate size, then this is no

real restriction. Either we change the initial conditions to yS(O) or

we perform a logarithmic scaling of t which resolves the boundary layer
so that also the solution of (1.9) is smooth. We approximate the problem

(1.7) by the multistep-method (1.12). Introducing y(t) into (1.12) gives

-15- L




us, using (l1.10)

L[l = k(zv + kq,(tv) - *
Therefore we get for the error w = y - u
(1. 26) Ww) s kift ), w =¢ = 66D, u=0,L .01,
v M B

If the approximation 1s stable, then (l.26) gives us the usual error

estimate. Observe that  depends only on the derivatives of y(t)

and not on the coefficients of the differential equation. Thus the stiffness

does not enter. Thus we need only to investigate the smoothness of
the solution of the differential equations and to derive stability conditions.
Instead of starting from the relation (1.10) we can start from

identities which contain higher derivatives, for example

4 A 2.2 2
y(tvﬂ) -5 kdy(tv+l)/dt + i k°d y(tv+l)/dt =
(1. 27)
1 L .22 2 5
y(t)) + 5 kdy(t )/dt + 15 k'd y(t))/dt” + k74 (t ),
or
2 1,22 2 _
y(t, ) - 3 kdy(t )7dt + o kody(t o )/dt” =
(1. 28) i g
wit )+ kdy(t )/dt +k g, (t ),
where
5 4 4
lo.t )] < == max ldPy/at’l, lo,(t ) <= max la*y/at’l.
5 v 720 ¢ et 4 v 144 £ <t<t
v = v+l v v+l
-]6-
{




5 .5
Observe the extremely small constant in front of d y/dt . These two
examples are special cases of the Pade' approximations lp =g =2, and

p=2, g=1 respectively)

r )
v o=Dee+g =) 50 i
)L:Jo jt(r - 3)r +g)! L y‘tv+l)/Olt =
(1.29)
q ) .
X q!(r +g-j)! ) ) j r+q+l
;A:"o jt(r +q)i(q - j)! k@ yiear tk ll'r+q+l(tv)
where
clgt r+q+1 r+g+l
l‘br+q+1(tv” = (r+q)!(r+qg+I) e Id y/dt X
t <t<t
v - v+l

If y(t) is the solution of the differential equation (1.7) then we
can rewrite the above relations as relations between Y(tvﬂ) and y(tv).
The coefficients then depend on A, F and their derivatives. We obtain
the difference approximations by replacing Y(tv+1) and y(tv) in these

last relations by u, and U respectively, and neglecting .

+1

For example, if y(t) is the solution of the scalar equation (1.21) then

dly/at = Ny

and the difference approximations corresponding to (1.27) and (1. 28) are

2 1 2

1 A o2 3 1 1.2
(1- 2k\+12k \ )Uv+1' (1+ Zk)\+12k A )uv
1

and

1 deu o= - B 2155

( 3 uv+1 - 3 6 uv ;
respectively.

<]7=




Ehle [ 3] has proved that the methods based on (l1.29) are stable

for the class 'ﬁo if p = q and strongly stable if p=q+1 or

p =g + 2. There are no new difficulties in proving theorem 1. 3 also
for this type of approximations.

There 1s a large literature on methods of this type, for example
[5], [7], [9]. Sometimes they are not derived from identities between
smooth functions and their derivatives. This can be dangerous.

Approximate, for example, the differential equation (l.1) by

)4u = (1 - 3ka

(1. 30) (1 - ka ot

4 dt
)uv + k(1 - ka“) be ,

11 11

which is strongly stable for the class 770. It is consistent in the usual

sense, i.e. the solutions of (1. 30) converge to the solution of the
differential equation (1.1) as k = 0. However, the convergence to the

smooth part, (t) is not uniform for the whole class. Let b = a

¥g
and Yo + b/(a11 -d) = 0. Then

11

dt
lim y but lim qul = o0,
a ~— =Q0 a - =00

11 11

1]
|
®

There are no difficulties to derive algebraic conditions for uniform
convergence. One can develop the solutions of general systems (1.7)
into asymptotic series. The same is true for the solutions of the difference
approximations. Comparing these series gives algebraic conditions for

uniform convergence.

-8~




2. The analytic problem.

In this section we consider the initial value problem (1.7)

(2.1) dy/dt = A(t)y + F(t), y(0) =y, t20,

O’ -—
where A(t) is negative dominant. This is no restriction, because if

A(t) is only essentially negative dominant then we introduce a new variable

S o

and obtain the system

-at

dy/dt = (Alt) - al)y + e “°F,
which is negative dominant, provided « 1is sufficiently large. We want
to estimate the solutions of (2.1) and start with

Lemma 2.1. Consider the differential equation

(2.2) dy/dt = a)(t)y + F(t), a(t) = Real 3, <0 .
Then the following estimates hold
(2.3) ly) | <t max [F(n)] +s®)ly0)l,
0<n<t
(2.4) ly()| < max E(n)/aln)] +s(®)ly(0)] if a<o,
0<n<t

where

t

[ a(g)d

0

s(t) = e

Proof. The solution of (2.2) can be written down explicitly

t t
[ a8t [ a(6)de

yit) = [ e F(n)dn + 8 y(0) .

]9 =

.HVO"“_"“‘




The first inequality follows from

Furthermore if a < 0 then

t
| [ dien dnl © max [F(m)/a(m |,
g 0<n<t

which gives us (2.4).

We consider now the homogenous system
(2.5) dv/dt = A(t)v .
For its solutions we have

t be real numbers with 0 <t < t. Assume

Lemma 2.2. Let

tO’ 0

that A is negative dominant then

t
5 [ a(g)dg
t
lvit)] <e ¥ )l, a = max Real a

]

i.e., the solution operator S(t,to) of (2.5) satisfies the estimate
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(2.6) Is(t,t )] <e

Proof. Let k = (t - to)/N, N natural number, and denote by

. B [O + vk gridpoints and by W = w(tv) functions defined on the grid
k k
s £ A e
W o tN-1 N

We approximate (2.5) by

(I - kA(

, tv+l))w =w , w. = vt

v+l v 0
By assumption A is negative dominant. Therefore for sufficiently small k
(1 - oka(t, N lw, 1< lw |

+ v

N-1

=l
wy | < TT (- skalt, ) wol -
v=0
We know that, as k =0,
i
6 [ a(g)dg
Nﬁl -1 Yo
Wy~ v(t), v.—o 1- 6ka(tv+l)) - e

Therefore the estimate (2.6) follows.

For the system (2.1) we have

wZf=

il Gaiat I .
— i BRI AEVAER



Lemma 2.3. Assume that A is negative dominant. Then the

solution of (2.1) satisfies the estimates

ey ly(t)] <t max |F(n)] + s(t) ly(0) | .
quf_t
el o -1
(2.8) vt <267 max [(A(n) + A ()R | + s(0) [w(0) |
0<n<t
where
t
5 [ a(g)de
s(t) = e 0 , @ = max Real s
i
and
a11 0 0
0 az‘2 0 0
N =
%hn
Proof. The first estimate follows from lemma 2.2 and the representa-
tion
t
y(t) = [ S(t,n)F(n)dn + S(t, 0)y(0) .
0

We are now going to prove the second estimate. By lemma 2.2 we can

assume that y(0) = 0. Let t be fixed and denote by M the space

of all continuous functions g(t) with g(0) = 0. The system

£0y =dy/dx - Ay = F

22~




e P T e r
e

has a unique solution in M and, by lemma 2.1

| Jps ‘ PR T g
(2.9) leg rll <2lica + A7) Pll, llgh = max lg(e)l .
0<g<t

Let § ienote the operator

sg;(A-Aw,YtM-

Then we can write the differential equation (2.1) in the form

-1
= 8 F

=l
(I~£O£ 0

1

Definition 1.1 and (2.9) imply
_l P | % _1 ¥ y
|u0ﬁyn:zmA+A> ﬁy“gu-éﬁyﬂ,

and the estimate (2.8) follows from (2.9).
The assumption that A is negative dominant implies that

N = * = | ( v
(2.10) HA+A)1AL§w\‘K)1A1+HA+A)HA"AH§

N |—

(p+l—6).

Thus (2.8) can also be expressed as

(2.1) vl < B2 max (A7 (R |+ sy -
GEn=t

We shall now prove theorem l.2. We use the notation F[ A = dvF/dtv
and start with

-1
Lemma 2.4. Assume that A is negative dominant. A A[ v]’

A-IF[ V], v =0,1,2,...,p; canbe estimated by the functions (L8]

Proof. Denote by A the diagonal of A. Then

1

a7l < s ada- ap7iaalvr

-23-
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By assumption la. | 21 and (I 4 A (K~ ;\))—l: 2 "»—1. Thus A-IA[ ¥

11
—hiEg]

: AL -1 | v
can be estimated by A A which is composed of terms a a[ I.
11 1j

-1 [ v]

The same procedure works for A "I ind the lemma 1s proved.

Lemma 2.5. Assume that A 1s negative dominant and define C(t)

by A(t) = A(0)C(t). Then (_'l VJ, uf—l)l "I, v = 0.1 2, ...,0; <can be

[v]

‘ =
estimated by A A QL2 o

) h ey )

_1 b3
Proof. Let B = A dA/dt. Then A is the solution of

dA /dt = B'A" .
C*(t) 1s the solution operator of this differential equation and therefore
the lemma follows from well known estimates.
Lemma 2. 6. Assume that A is negative dominant. The solution

y(t) of (2.1) and its first p derivatives can be estimated by

(2.12) y["]r;O), Al "], A_lF[V], w2 A L

Proof. Differentiating (2.1) gives us

(2.13) dy[“]/dt - Ay[V] I V}__j (”)A[V'“]y[“] gt
u=0 '#

Therefore the lemma follows by induction from (2.11).
A simple consequence of lemma 2.6 is

Lemma 2.7. Assume that A 1is negative dominant and that
; Pl e 5 By
(2.14) y(0) =0, F* '(0) =0, v=0,1,2,...,p~1.
Then the solution y(t) of (2.1) and its first p derivatives can be

estimated by

-l




(2.15) A-IA[VI, A'li'[”], v=01,2...,p.
[v

Proof. (2.13) implies vy ](0) =0 for v =0,1,2,...,p. Therefore

the lemma follows from lemma 2.6.
We can now prove the first part of theorem l.2 by reducing the

general case to the special case of lemma 2.7. Consider the system

(2.16) dw/dt = Aw + F ,
where
p=i v p-1 v
T Eoale] IR o TR
A-LL"A (o), F= ), =P e,
v=0 p=0

in a neighbourhood of t = 0. We seek a solution of the form

(2.17) w(t) = e N R (E) e (0 =08,

Introducing (2.17) into (2.16) gives us

(2.18) de/dt = A¢ + £(t), @(0) = 0,
with
p=l v v viw
SO R Sl alnlise L i [v] p
f(t) = L UOA (0) oo = g wog tE 0]+ (),
= u:

where wp = 0 and fl(t) is a polynomial in t with coefficients depend-

ing linearly on A[V I(O)W“. Choose now the wv such that

B {1 s [v]
: T
(2.19) L A“(O)M-WVHM (0)=0, v=0,1,2,...,p=1.

p=0
We shall show that this is always possible. Let

v i []V!W
L __Z/ A(O)AIJ__‘.’_:L-L_

v p,!(V"}L)-'

p=l

=B




Then (2.19) can be written in the form

(2.20) w‘—A_l(())wV LV-A—I(O)I'[VI(O), v e @ b2, .., p=kL. =8,

v +1 .

Observe that Ll depends only on w with p <v and that wp = 0.

' p

I'herefore, if we neglect the term A-I(O)Wuﬂ then the w = are uniquely
| ] g =] [ V] -1 [ V]
| letermined by (2.20) and can be estimated by A “(0)A" " '(0), A “(0)F* "“(0).
The same is true if ‘A—I(O)’ is sufficiently small. If A-I(O) is not
small, then the determinant D of the linear system (2.20) can vanish.

However, by introducing a new variable ; = exp(at)y into (2.1), we

can always choose « such that D # 0. Observe that D does not

vanish identically.

In a neighbourhood of t = 0 the system (2.18) satisfies the
e AT o UL e e
conditions of lemma 2.7. Furthermore the derivatives A "A" ') A 'F

can be estimated by A—lA[vl, A-lF[V}. Therefore, also ¢(t) can be

estimated by these functions. This is also true for the solution of (2.16)
if we choose

(2.21) w(0) = w
as the initial value.

o0
Let g(t) ¢ C be a ''cut-off' function, i.e. there are constants

i <a, < < ®©
e with 0 o <a, such that
1 for Of_tgal,
g(t) =
0 for tZOIZ-

Let w be the solution of (2.16). Then w = gw is the solution of

-2b=
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(2.22) dw/dt = Aw + ?‘, F = (dg/dt)w + gF, v-/(0) = W

If we choose the uj, j = 1,2; sufficiently small then w has the same

properties as y in lemma 2.7. Subtract (2.22) from (2.1). Then

u=y- w  is the solution of

~

(2.23) du/dt = Au + (A - Aw + F - F, u(0) = y(0) - w, -

u can be written as u = ul + v where

dv/dt = Av, v(0) = y(0) - w

initial value. For u1 the conditions of lemma 2.7 are fulfilled and
the first part of the lemma is proved.
To prove the second part of theorem 1.2 we need another version

of lemma 2.7.

Lemma 2.7a. Assume that A is negative dominant and that

v0) =0, "oy =0, v-0,1,2,....0-2.

A_IA[V], A-IF[v], Vo= 0lheZ. s ips and F[p_l](O) .

Proof. (2.13) implies ylv](o) =10, vi= 01,2, ..., p; arnd
(Pl ny _ o[P-1]
Y (0) = F (0). Therefore the lemma follows from lemma 2. 6.
We need also
Lemma 2.8. Assume that A(t) is negative dominant. Let v(t)

solution of (2.5). Then

=P T=

and Y is the solution of the differential equation (2.23) with homogenous

Then the solution of (2.1) and its first p derivatives can be estimated by

}
.
i‘




v v
(t V)[“]v L V[“]v V_:i}*v Vy B 0,1,2,-.-,});

can be estimated by

P P 0,1,2,...,p; and v(0) .
Proof. It is clear, that we need to prove the theorem only for tvv[ “].

| v
| Let w =t v. Then w is the solution of

dw/dt = Aw + vtv‘lv, w(0) = 0 .
We have to prove that w[“], p=20,1,2,... v; can be estimated by
=]
A A[T], T=0,1,2,...,p. For p =1 this follows directly from lemma 2. 6

because A-ldv/dt = v. The general case follows by induction using
lemma 2. 6, and the observation that v{ k] can be expressed by deriva-
tives of lower order using the differential equation (2. 5).

The last lemma shows, that outside a ''small'' neighbourhood of
t = 0, the solution v(t) of (2.5) and its derivatives can be estimated

by atalvl

We shall now improve these estimates. We shall show,
that if A-ldA/dt is of moderate size, then the rapidly changing part of

v(t) is to a first approximation the solution of the system

1(0) = v(0),

(2.24) dvl/dt = A(O)vl, v
with constant coefficients.
Theorem 2.2. Assume that A is negative dominant. Then the

solution of (2.5) can be written as

(2.25) V= ote

D=




where v. 1is the solution of (2.24) and e, is the solution of

1 1
(2. 26) del/dt = A(t)el + F(t), F(t) = (A(t) - A(0)) v

Furthermore e and del/dt can be estimated by A-ldA/dt.

Proof. Introducing (2.25) into (2.5) gives us (2.26). By lemma 2.5

ekl

a Y oE) = t

A-I(O)tvl :

Lemma 2.8, applied to the equation (2.24), and lemma 2.5 show, that
the theorem follows from lemma 2.6 with p = 1.

In the same way one can prove.

Theorem 2.3. Assume that A is negative dominant. Then the

solution of (2.5) can be written as
\p
(2..27) vit) = ), v (t)+ ep(t)

where vl(t) is the solution of (2.24), the vu(t), w >1 are the solutions of

(t) + (A(t) - AQ))v ,

1 ¥ vp+l(0) =0,

dvuﬂ/dt = A(O)vp_l_

(2.28)
w =12, 050 =1

and ep satisfies the equation

(2.29) dep/dt = A(t)ep + (A(t) - A(O))vp(t), ep(O) =20
Furthermore

M i RS e VLVI v=0,1,2...,mp=L2..0,p=1;

=29=




———————————

can be estimated by

v(0) and A-IA[“], W 08 RO

Finally, in the same way as before, we can replace A(t) by

—1 v
L %—' A[ i l(0) without destroying the desired estimates. The resulting

v=0

P

n it
equations can be solved explicitly and consist of terms of the form t e a
where X denote the eigenvalues of A(0). These terms generate at

most boundary layers. We have thus proved theorem l. 2.




3. A normal form for the differential equations.

In the first section we discussed examples which show how important
it is, that the system (l.7) is essentially negative dominant and that
the functions (1.8) are of moderate size. One can also give another
argument. For simplicity we consider only the homogenous system
(3.1) dy/dt = A(t)y
where Alt) ¢ Cp, p>1 but A and its derivatives need not be of moderate
size. Assume that we want to solve this system by a standard difference
method. Then we discretize (3.1) and use point values A(to). Therefore

it is reasonable to demand, that the equations

dw/dt = Aow, AO = A(to)

with constant coefficients, locally describe the system (3.1). For the
numerical technique to work, it is essential, that the solutions of (3.1)

do not grow too fast. Thus, we demand that there are constants KO, c of
moderate size such that

A

t
(3.2a) le L l_<_KOeCt

for all fixed values t_ . (3.2a) implies that the eigenvalues X\ of A

0 0

satisfy the condition
Real A < c .
Another demand is that the solutions do not oscillate too rapidly. This

leads to the condition

(3.2b) [Im x| =7 ol Real N+ c, p, ¢ constants of moderate size .

-3]-
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We shall show that the conditions (3. 2a) and (3. 2b) naturally lead

to matrices which are essentially negative dominant. We have

Theorem 3.1. Let JI(KO‘ c,p) denote the family of all n Xn

matrices for which (3. 2a) and (3. 2b) hold, and let 32(0, p, 6) denote
the family of n xn matrices which are essentially negative dominant.
For any fixed KO‘ 5 there i3 a universal constant Kl such that for

every matrix A e 31(K0, C, p) there is a nonsingular transformation S with
Is||s7t B
| < Kl and S "AS ¢ Sz(c, p, ) .

Proof. In [6] we have shown that there are universal constants

Ku, KlZ such that for every A ¢ 3 there is a nonsingular transformation

]
T with
-1
[T[|T I_SKH
and
B Bop s G pes B
0 b b et
T-l(A _ CI)T " 22 23 2n :
0 0
nn
where
n
. < f = ¥ B .
j%,l’bijlelleealb“l, Real b, <0, i=12,...,n
j#i
By (3. 2b)

[1m biilﬁleeal b“l =S R o SR T

=32=




Therefore we can choose a diagonal scaling

a0 0
1
0 d2 0 0
D = , 4, >0
i
0 0 d
n

-1
such that S "AS, § = TD is essentially negative dominant, i.e. belongs

to 32. Here ;'DHD—ll only depends on 6, KIZ'

Now assume that A(t) € ¥ for every fixed t and consider the

1
system (3.1) in a neighbourhood of a point tO. Let S0 denote the

; ) ~ -1
transformation of the last theorem. Introducing a new variable vy = S0 %

we obtain
(3.3) dy/dt = B(t)y, B(t) = S. A(t)S
where B(t.) is essentially negative dominant. If A(t_ ) shall represent

0 0

A(t) in a whole neighbourhood of t. then B(t) must be essentially

0

2 1
negative dominant in a neighbourhood of t. provided we change & to = &

0

and ¢ to <2c. Thus, we can divide our interval of integration into

subintervals t < t<t and in every subinterval transform A(t) into

i i+l

an essentially negative dominant matrix by a transformation Si for which

lSi‘ lSi—l! is uniformly bounded. A more precise description is given in
Theorem 3.2. Consider the system (3.1) and assume that there are

constants K, c,p such that the matrices A(t) ¢ 3 (K, c,p) for every

1

fixed t. Assume also that there is a constant KZ such that for all fixed t

lZ\'l(t)dZ/dtl <K, A=A-(c+Ijl.

«33e




Then one can divide the interval of integration into subintervals

E. St <t E,
et 1) (L 11 |

- ti3n>0, n = const.,
and in every subinterval there is a transformation Si with ISI, ‘ [S;ll
uniformly bounded and S;l.l\(t)Si € :}Z(C +1,2p,6). Furthermore &
can be choosen arbitrarily.

Proof. Let tO be a fixed point. Without restriction we can assume
that A(to) is essentially negative dominant. Otherwise we would use

the transformation of theorem 3.1 to obtain the system (3.3). Proceeding

as in lemma 2.5

>

(t-t) = Z(to)}:(t -t

0)
with

E(0) =1 and |dE/dt]| = IZ’le/dtI <K,

and the theorem follows.

If the system does not satisfy the above conditions then using a
numerical procedure directly can be very dangerous. However, we shall
show that we can obtain the normal form by combining the transformation
of the dependent variable with a local stretching of the independent variable.
We divide the interval of integration into subintervals ti st ti+l
and construct in every subinterval a nonsingular transformation Si and

a stretching

- = = = - '<~<i+
t-t ai(t i), @, tiJrl ty 1512 1,

-34~




such that the transformed systems

3. 4) u’v/d? = aisi—lA(.t‘)Siv

are essentially negative dominant and the functions (1. 8) are of moderate
size. Then the solutions of (3.4) are smooth in the interior of every
subinterval 1i < I e 1, but boundary layers could appear at

t - 1,2,... . By lemma 2.6 we can avoid these by demanding that the
stretching constants a do not increase too fast and that the transforma-
tions S1 do not change too fast, i.e. there are constants d >1 and

K. >1 of moderate size, such that

0
. e l -1 I -1 ,
{3.5) uifl/ai <d, max( S1 Si+l" Si+lsi = KO -
We shall now describe the details and start with the scalar equation
(3.6) edy/dt = -tpy, y(0) = Yo t=20,

where p is a natural number and € >0 a small constant. Its solution is

: +1 +
given by y = 2xp(t” /e(p + l))yo, i.e. it is a function of ‘c/&:l/(p l).

In a neighbourhood of t = 0 we introduce into (3.6) a new variable t

by t= a?, a = const. > 0 and obtain

+~
pltp o

P - e N N (03 =
€3.7) dy/dt = ————e y all(t)y.

We determine the largest « such that

(3.8) max (min(1, ‘al—ll(z) l)ldau(;)/djc[ < K

- 35~




Here K >

1 is a threshhold constant of moderate size. For simplicity

we assume that K = p and obtain

D+l s 1/(p+
pa' = K€, I 5”‘1 b .

| . i 1/(p+l)
Thus we have determined the stretched variable t ftor 0 <t < € APt t

1

(3.8) guarantees that the solution of the transformed differential equation (3.7)

is smooth for 0 <t < 1. (In general one has to include more derivatives
in the expression (3.8). However, for the equation (3. 6) the inequality
(3. 8) insures that an«t) and all its derivatives are of moderate size.

This is quite common. )

We determine now the stretched variable in a neighbourhood of t = t, .

1
Let t = tl + a(t - 1), then the differential equation becomes
o I (& - m° 5
d = P e = & «
y/d " y = a),(t)y

The obvious modification of (3.8) gives us a = tl and we have determined

L the stretched variables for 0 < t < t, = Ztl' This process can be

continued. After n steps we have obtained the stretched variables for

< tn = Zn_ltl. It is clear, that the interval length corresponds

0

A
A

t
exactly to the behavior of the solution of (3. 6).

If the given system of differential equations (3.1) is essentially

negative dominant, then we can use the corresponding procedure. In the

simplest case the condition

(3.9) max (min(l, (ai"il(?)l)ldaij(?)/d'{ ek f0= Lt

i<t<i+l

=36=




determines a stretching

(3.10) f -t ulm-?i),t b

Applying (3.9) to (3.1) gives us

~

(3.11) dy/d uiAfz)y .

If a; <1 then also (3.1l) is essentially negative dominant. If a >l
then this need not be so and we have to limit @, to a value o Za !
such that (3.11) satisfies (1. 3a), (l.4a) and (1. 4b).

If the system (3.1) is not essentially negative dominant, then we
have to transform it to that form. This can be done in the following way.

For t = 0 we use the Q - R method to construct a unitary matrix U(0)

which transforms A(0) to upper triangular form

“1 P12 ®1n
oy B Bon
U (0)A(0)U(0) = = B(0),
0 c - 0 K
n
where iwl‘r = ixzi 200> ixn |. The next step is to check whether the

conditions (1. 3a) and (1. 4a) are satisfied. If not, we apply a stretching
t = .3'{, 0 < ggl, such that the eigenvalues of BZ(O) = ﬁBl(O) satisfy
these conditions. (This procedure is not very satisfactory and shall be
improved in another paper.)

The last step consists of a diagonal scaling
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such that

(3.12) D "B_(0)D

satisfies the condition (1. 4b).

Unfortunately DI ID—II is not always of moderate size. In that
case we proceed in the following way. Let T >1 be a constant. We
shall divide the eigenvalues Bxi of 82(0) into classes Nj' The class
Nl is defined by

D) P e N if lﬁxilg .

2}) ﬁKnE Nl y
3) Bxi e N

if Pk, ¢ N, and lwil/lxiﬂi =7

1 1

If Nl does not contain all eigenvalues then there is one eigenvalue

with Br 41 © N, but Bxp§ N,. Then the class N

last two rules with an replaced by Bxp. The other classes are

2 is defined by the

constructed correspondingly.

Now we construct a transformation H such that

B, O : 0
0 0 0
3 -1 r=1
15 (0)H = e
2
o Ll . Bll
-38=
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where every B‘) is of the same form as BZ(O) and its eigenvalues consist
)

of the class N . Then we apply a diagonal scaling
J

. 0 0
B

IR s R 0

) 2
D, =
0 0 D
113

such that
(3.13) B (0) = plu B (0)D. H
‘ 3 1 2 1

_1 ~
is essentially negative dominant. If lDlH[ I(DlH) | < ‘DOI ID01| we use
(3.13) otherwise we return to (3.12).
In this way we have constructed a transformation Vv = S(—)ly and a

stretching t = Bt, 0 <t <1, such that the system

~ _l -~
dv/dt = }380 A(t)Sov

-1
has the property that ﬁSO A(0)S. 1is essentially negative dominant. Then

0

~

there is an interval 0 <t <t in which the same is true for BSBlA(t)S

1 0
if we replace ¢ by 2c and & by Elé. Let
E if E 1
i = k
i <
t/tl if t1 1
then the system
~ _1 ~
(3.14) dv/dt = aOSO A(t)SOv

is essentially negative dominant for 0 < % < l.
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At -t 1 we modify this process somewhat. By (3.5) the stretching
shall not increase too fast. Also, in many cases SO 1s a good approxima-

tion for Sl. Therefore we perform at t = tl =@, a preliminary scaling

- & i -1
t - tl du0<t -1), 1<t<2, and the transformation u = S0 y to obtain

9 . Sl
{3.15) du/dt = JuOSO A(t)Sou :

If (3.15) is essentially negative dominant then we use (3.15). Otherwise

we use the process as described earlier to construct a matrix T(tl)

such that

1

(3.16) BdaoT_ (t :

)SO At )SOT(t )

1 1 1

. -1 ;
is essentially negative dominant. If ITI IT ‘ is of moderate size then

we proceed as earlier. Otherwise we return to (3.14) and replace ay

and tl by aO/Z and tl/2 respectively and restart the process.

Eventually the procedure will stop because in the worst situation

d(ao/zp)s(;lA(tl(Zp)So will be of moderate size. Then we can choose T = I,

i.e. S0 = Sl and proceed as earlier. In this way we determine t2

and the following 'cJ and construct a system which is piecewise negative

dominant. The new system is treated as stated earlier (see (3.9)).

We shall now illustrate the technique for a simple example. Consider

the differential equation

1
o

ey" + (a(t)y)' +b(t)y

with initial conditions

I
~

y(0) = Yo y'(0)
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Here € >0 is a small constant and a,b with a > 0, b < b0 <0 are

smooth functions of moderate size. We write the above equation as a

first order system by introducing new variables y(l) = Y, dy<2)/dt = b(t)y
and obtain
(1) a(t) s (1)
dy d 4 e " e ¥
(3.17) = = - = Alt)y
dt dt (2) (2)
e b(t) 0f\y

If a(t) >1 and ib(t)] < ¢ then the system is essentially negative
dominant and nothing needs to be done. Otherwise we transform the

matrix A for t = 0 to upper triangular form employing a unitary transforma-
tion U = U(0). The eigenvalues X\ of A(0) are the solutions of the

characteristic equation

ex® & S0k +B(0) = 0,

b 0
% e B e __Lg)+a_1_)’
I 2¢& €
4e
2
A :—w+signa- \[QLOJ+§—‘(Q).
2 2¢€ € 452

Observe that for lal >> Ne the two eigenvalues have the form

X _ao) _ b(0) _ b(0)
: (ol g’ z‘exl” a(0)

Furthermore b <0 implies that xl, >\2 are real and

lkl(O)I 2 lb(O)/ell/Z :

=i}~




Ll The eigenvector corresponding to X\, is given by

1
1 2 =1/2
o = , T = (L+ (b(0)/A(0))°)
b(0)/A,(0)

and the desired unitary transformation has the form

; _ b(0)
XI(O)
o) = v
b(0)
+ x.(0) 1
1
Then
Xl(O)g(t) i
€
*

d(t) b(0)

exI(O) exl(o)

with d(t) = b(0)(a(t) - a(0)), and g(t) =1+QE@£—Z—(;LQ. Thus d(0) = 0, g(0)=1
1

and Bl(t) is upper triangular for t =0. The condition (l. 3a) is always

satisfied. However, (l.4a) does not need to hold, because xz >0

and X\, = 0(1/Ne) when a(t) = 0. To satisfy condition (1.4a) we

perform a stretching t = Bt, where

ekl(o) 8
(3.18) p=
cekl(o) ! b(0) >_l_
2b(0) ! ex(0) 2
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Then
Br,(0)g(pt) -8 !
£
B,(t) = BB(t) = 3d(8t)  Bb(0)

exl(o) eX,(0)

The next step is to apply a diagonal scaling

2
5\1(0) ?
PO =
0 1

Tat v = D—lU;“y. Then (3.17) becomes

~

Br(0)a(pt) - Zx (0)

21
dv _
(3.19) dt 2pd(pt) Bbo) |V
eZ,\f(o) Ex ()
Denote by
P
cexl(o) i b(0) < —LC
— b
d caxl(O) 2b(0) exl(o) 2
(3. 20) t <—— - ﬂ
1 — 28b(0) 1 d b(0) ; 1
; er(0) 7 2 =t
L
the largest value such that for all T with 0 <t < 'El
0) - a(pt 1 |~ 2pd(pt 3
(3.21) Mz-—,‘t ‘5-c,
en(0) 4 1 2)\12(0) 2

and introduce a new variable t by E = "E Then (3.19) becomes

3=




cey B
/Ml(O)gmtlt) 5 xl(o)
X dv 5
(3.22) =SS & fe v
dt 1 2pd(pt,t i
pd(p | ) Bh(0) I
)
esz(O) eh,(0)
< Yg 1. The

0

and the last system is essentially negative dominant for

= pBt, =

conditions (3.20) and (3. 2l) are satisfied if we choose
1

cle [\1(0) ‘ .

t. =

1
c, b and da/dt butnot on

E3023)
is a constant which depends on

Here c
Ié
Also, the conditions (3.9) are essentially satisfied and no further stretching
1 1s given by

g
Thus, the interval length 0 < t <t

is necessary.
In general we get

const. € |K(ti) l

t, = const. ahl(o)l
BT

- t =

There are two different situations
>0 everywhere. Then elkll =~ la/b| and the interval

1) a(t) > a,

length never becomes very small.
0 for some t = t. Then 8‘)\(;” = 0(Ne) and the

2)
interval length deminishes exponentially to 0(Ne) when t approaches t

This is completely in accordance with the behavior of the solution of the

differential equation.
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4. Difference approximations.

In this section we consider the system (3.1)

(4.1) dy/dt = Alt)y + E(t). T >0
and approximate it by general difference approximations. We start with
multistep methods,
\r r
(4 2) A A -y \
1.2) L{u] L (ajI + kij(tv_j))uv_j k L ij(tv_j) :
j=-1 j=-1
where @_| = 1 and p_l < 0. We write (4.2) as a one-step method
(4.3) v, = Blt, kv +KF, v=0,12...
with
r
(1) i
v UL L ﬁJF(tV_J)
el
= y fv = (1 +Kp_lA(tv+l)) 0
(n(r+l)) "
i 0
Ey(t, k) E(t, k)
I 0 0
ol L S 1 0 0
0 0 1 0
where
~ =d ) .
Ej(t, k) = -(I + kﬁ_lA(t + k)) (ajI + kBjA(t - §Rk})y 3= O dy syl
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The aim of this section is to prove theorem l.3. For this we need
the following two well known lemmata.

Lemma 4.1. Consider a class % of problems and assume that the
approximation is stable for this class. Let A(t) be the defining matrices
and consider the class % of problems where A(t) is replaced by
A(t) = A(t) + B(.). If the B(t) are uniformly bounded then the approximation
is also stable for the class ;

Lemma 4.2. Consider a class X of problems and assume that
there are constants n >0, K >0 such that for every problem in #%:

1) the interval of integration can be divided into subintervals

g <= with t -t >
i=t=hy 141 1=

2) there is a transformation Ti(t) in each subinterval which satisfies

ITil lT;l[ + ’dTi/dtl <K

3) the approximation (4.2) is stable in each subinterval for the

transformed problem

1

Lar + T. dT, /dt .
1 1 1

dy/dt = Ay, A = Ti'
If the local stability constants KI’ KS are uniformly bounded then

the approximation is also stable for the class ¥%.

We make
Assumption 4.1. We consider a class 7(Q) = 7(2,c,p, 6,K) (see
definftion 1. 2) for which ¢ = 0 and 1- 6 is sufficiently small. Also,

the approximation (4. 2) satisfies assumption 1. 2.
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This assumption is no restriction. 1) If ¢ # 0 then every

A ¢ 7(Q) can be written in the form A = A1 + Bl where the Bl are
uniformly bounded. By lemma 4.1 we can neglect Bl' 2) Let A(tO)

satisfy the inequalities (1. 3a), (1. 4a) and (1. 4b) with ¢ = 0. By lemma 2.2
A(_to)t
le | <1 1i.e., the relation (3.2a) is satisfied with KO =l Se =0

Furthermore, for every eigenvalue \ of A(to), there is an a,li such that

n
N Y <[~ 5 .
X aii] ijl ‘aij| < (0 ) | Real aii'
JEa!
Therefore,
|Real A | > & |Real aii" lIm \| < |Im aiil +(1 - 6)|Real aiil <

<(p +1- 6)|Real a.l.ll < 6-1(p +1-6)Real |,

and the relation (3.2b) holds with ¢ = 0 if we replace p by
py= (ot 1~ 6)/6. Thus, if A(t) € m(%,0,p,5,K) then A(to) € zl(l,o,pl).
Furthermore, A(t) - I is negative dominant and, by lemma 2.4, the
logarithmic derivative (A - I)—ldA/dt is uniformly bounded. Therefore,
by theorem 3.2, we can transform the class 7($) to another class 7(R)
where 1 -6 is as small as we like. The transformation is piecewise
constant for every A and lTi | [T;l | is uniformly bounded. By lemma 4.2
we need only consider this new class.

To simplify the notation we shall use

Definition 4.1. A(t) is weakly negative dominant if (1. 3a), (1.4a)

and (1. 4b) hold with ¢ = 0.

wlf e

~




We shall also simplify the difference approximation. For c¢ = 0
the matrices A(t) - I, A(t) € 7(§2) are negative dominant and, by lemma 2.5,

(4. 4) At - jk) =1 = (A(t) - I)(I + jkcj(t,k)) X
where the LEJ are uniformly bounded. The matrices
(4.5) EJ(t, =t kp_lA(t))—l(aJI + kij(t))

are uniformly bounded and have uniformly bounded derivatives. Further-
more, by (4. 4),

Ej(t,k) = Ej(t,k} + kc)(t,k)

~

where the Cj(t, k) are uniformly bounded. Therefore, by lemma 4.1,
we can replace (4. 3) by the difference approximation

(4.6) ¥ il B(tv’k)vu 3t ka, v (B A

where B has the same form as B with Ej replaced by Ej'
We consider now some special cases. Let k be fixed and denote

by the class of problems where A is negative dominant and

m
0,d
|kA| <d for all t. Here d is a sufficiently small constant. By (4.5)

E =al+pKkA+KAQKA, B.=-af .+,
5% p} Ql pJ aJﬁ‘l BJ

where Q are analytic functions of kA. Therefore we can write the
J
matrix B(t, k) in the form
% AB, + AQA
B B0 + ABl QA

where
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ARCELCI s 6554 Meborv

P 0 kA(t) O 0
A = At) = ,
0 0  kAt)
P | o 3 3 3
Y ulI arl pol B, prl
I 0 0 X il 0
B, , Bl— h
0 oF IE 1a0 0 0

and Q(t) is an analytic function of kA. By assumption 1.2, the approxima-

tion (4.2) is stable in the usual sense. Therefore, there is a nonsingular
transformation

gt e B!

tr+11I tr+1r+1I

such that




We can consider the matrix AB1 as a perturbation of B

el o
0 here
fore, we can use the following theorem of B. Engquist [4].
Theorem 4.1. There is a transformation
H =T +AR
where R 1is an analytic function of kA such that
4.7) HBH ® = D + AGA .
Also, ‘: is an analytic function of kA and
/'Kl(om + kg A) 0 LT 0
{ 0 k ONT + kg By O ... 0
2 2
4.8) D =
0 - ‘ ’ IS e B e
S s

We can now prove

Lemma 4.3. Consider the class of problems ’ﬁo q° For sufficiently
’

small d and k there are constants n > 0, Kls > 0 such that the

solutions of (4. 6) satisfy the estimate

nq(tv) | -] 1
(4.9) [v(t )| <K (e iv0| + max A (t)F(t)])
; QZizv o
with
(4.10) q(t ) = 2_, a(t )k, a(t)) = max Real a_(t) .
v . J J . A
02jsv=l 1
Proof. Let w = H v , then the equation (4.6) can be written as
o v VARY
_1 P ~:
] 2] + kH F
(4.11) HvHv+1wv+1 (Dv + AVQVAV)WV PHVIV

By lemma 2.5
kAt + k) = KA(t)(I + kC(t; k))

where C is uniformly bounded. Therefore
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’ s - o - i e A 2 ’
T - e A Ry w1 v e ORI o 11 IR

_l -~ ~
H H I +kA P
“ i 1\ 9 rM‘lv

where P is also uniformly bounded. Furthermore,
-
kHF =AG,G =kHA F ,
| v v % v VvV v

with

S =] e
(4.12) 2 < €0 . ‘ ) <@ . | | .
4,12 !Cv[ < const L |A 1tv)},tv_j)1 <const. ), |A (tv_j)F(tv_J.)l

j=-1 j=-1

We first consider the homogenous equation (4.11), i.e., F = 0. For
1)

sufficiently small d, the row sums Rl of the right side of (4.11)

can be estimated by

}(l St = %u, for the rows corresponding to DS 5
Il +gk R + gk In | +(1 - ¢ |
Rl < |1 g), eal a g], m a,nl + (1 ))gjklReal anl
4.13) + const. d|k Real ay + k Im aii{ =
il 1gjk Real anl + const. d(1 + o) |k Real aii! <

1 - —lgAkiReal a..| otherwise .
205 ii

For the row sums RZ of the left hand side we obtain, correspondingly

R, > 1 - const. kz |Real a,. |
2 il

and the lemma follows from ;“ =0

Now assume that Wy = Vg = 0. Consider (4.11) for 0 §tj Xt
and let w(U) = max IW(I)I = lwll. Using row o of (4.11) with v +1=p
Iy )

we obtain from (4.13)

D A

The row sums of a matrix (aij) are defined by Z Iai_ |, I = 1,25« vuyhe
J=1




1 < : <l
— o -0(k))llw ! < const. k|Real a.. | lIG| -
2 = i

(

D s

g(1 + 0(k)k [Real a [ lIwll < const. klReala |liGI,

which proves the lemma.
T'he next special case is treated in

Lemma 4.4. Let ;il,dZ be constants with 0 < dl < dz, and k

be fixed. Consider all problems belonging to %7(Q) for which the eigen-

values of the matrices kA belong to 9. 4 (see definition 1.2). Then,
a C
' 2
there are constants KZS and ¢, with 0 <o <1, such that the i

solutions of (4. 6) satisfy the estimate

(4.14) vt )| <K__|(o +O(k))V‘v | + max
v 25 0 i
Bisisv

A‘l(t,)F(t.)
.
1 -0 +0(k)

Proof. The eigenvalues « of B have, by assumption, the property

that
‘K‘ <l-71.

Furthermore, B and dB/dt are uniformly bounded. Therefore, we can

e el Il . ,
without restriction assume that |B| <1 - > T Otherwise, we can find

a transformation T with ‘Tl IT_ll t idT/dt| uniformly bounded such

that TBT—l has this property. Also,

r r
= N -1 : N 3
k]fvf < const. 'Ql |A (tU)F(tv_j)J < const. jul A
= =

Therefore, (4.14) follows from known principles.
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We can now prove theorem 1.3 for the case that the approximation
(4.2) is strongly stable for the class 7%7(?) of scalar equations. By

lemma 4.2 we need only prove local stability. We consider the homogenous

system 4.1 in the neighbourhood of a fixed point tO. By lemma 4.1

we can assume that A(t) is negative dominant. Let k be fixed and

d >0 a constant. Then we can write A(t ) in the form

0
7 T (| A _(t
1170 12\ "o’
y:1 o0 " | | 5
. A, (t.) A _(t kA - on
210 L&D
| ~ o s panpe & "y, o w fc — s ! & A

where A:z'to) is the largest submatrix for which d!kA“tto)l <d. For
every eigenvalue X\ of A] ! there is, by the Gershgorin estimates, a ‘

{
diagonal element a“ with

n
;\—a.i(\ |a_{i(l—6)f}<eald RS 1T }\lzv'v}a i
i = & i it i1
=1
J#1
. 1
Furthermore, the row sums r1 of A“ satisfy the estimate kri > Ed’
Therefore

n
lka, | =kr. -k ), la,.|> b v ) = 8¥ e, ]
ii i J= 1j Z 1i
j=1
j#i

Thus lka“f > fd and the eigenvalues X(A“) of Al satisfy the estimate

1

i
!kx(A“)l > ds .

By lemma 2.5, there is a neighbourhood [t - tof <mn, n>0 a constant

independent of A and t such that the matrices Au\t), = 1;4é

07
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have the property

bk e s ;s RN s
lka, (0] <, lkxa ol zd, d dé .

v

Now consider the approximations (4.6)

(4.16) Al gl g ltl g flel
v+] v vV v

4. 07) v(ZI :B[ZI(t,k)v“’ka'fv‘[Z],
v+] v v v

for the subsystems

(4.18) dy[”/dt~A“y[l]+F[1],

2 2
(4.19) dy[ ]/dt = Azzy[ | + F[Z] :

respectively. We choose d so small that (4.17) satisfies the estimate

(4.9). If & -1, then the eigenvalues of Al converge to the eigen-

1

values X of A with [k\] > dl' By assumption 1.2 these eigenvalues

belong to @ Therefore, the eigenvalues « of B[l](t, k) satisfy

. o
dl'

the inequality

Ixfgl—‘;"r for lt—tolﬁn

provided we have choosen 1 - & sufficiently small. Ti)us, the solutions
of the system (4.16) satisfy the estimate (4.14).
We can now write the differential equation (4.1) in the form (4.18)
2] [1]
,

= AZly . The difference

2]

and (4.19) with ptH - g il

k2
approximation (4.6) can then be represented by (4.16), (4.17) and, for

sufficiently small k, the estimates (4.14) and (4.9) give us
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B < D] v conse. 1aTha , HHIVE2T,

xiVl 2l Il < Ivgzl | + const. ngiA“ I Nv[ H I,

flull = max ju. i .
0<j=v
Therefore, the approximation is stable provided
Ia7ta a3, 1 = o - &)%)
is sufficiently small. This proves theorem 1.3 when the approximation
is strongly stable.
The proof of theorem 1.3 for the case that the approximation is only

stable is more complicated. We start again with a special case. Let

k be fixed and let ',',’d - denote the class of problems for which A is
3

negative dominant, A ; is weakly negative dominant (see def. 4.1),
and [(kA)—1 | <d. Then we have

Lemma 4.5. Consider the class of problems 'fﬁd - For sufficiently
b

small 1 -8, d and k there is a constant K3S > 0 such that the

solutions of (4.6) satisfy the estimate
(4. 20) lv(t )] <K. (1 +kdt )lv. | + k(1 +dt ) max [F(t)]) .
v 3S v 0 v : j
gxizv

Proof. By (4.5), the Ej(t,k) are now analytic functions of (kA)—1

and we can write the matrix B(t,k) in the form

~ ~~~

B(t, k) = EO + ZBl + AQA

where Q is an analytic function of (kA)—l,

-55=~
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w (0)(I +

1

(kA)

0’ ,,-) are constant matrices of

the same form as B_,B . By

1" ]
assumption the approximation is stable in a neighbourhood of Ak = .
Therefore, we can apply the same process as used in

lemma 4. 3.

Using
theorem 4.1 again we obtain an equation of type (4.11),
l\lv ﬁ X B ~ "f ~ ~ o~
“v v+1wu+l ( v v AVQVAL’)WV : kHvFV
here
F o e =1
W vav, H =T+ AR, R is an analytic function of (ka) ~ ,
anda

:l«om rallkA)-l) 0 .
” ~ =3
~ (0)(I+g. (KA ~ ~
D - 0 KZ\ ) gl(k) I 0 ,gj>0, IDS‘<1-G.
0

~ -1
+
D gs(kA)

By assumption, A is negative dominant. Thus, by lemma 2.5,

(kA(t + k)Y = (1 + kC)(kaA(t) ™

and therefore

~

~ ~__1 ~ : &
15 105! yAL with P

v vl

I
—
e
P

ol

uniformly bounded.

Without restriction we can assume that D only _—onsists of blocks

aj(kA)_ ) because the block Ds + Ss(k.l\)-l has no influence

Bl




NN AR e e e L U R S S .

on the form of the estimate. Also, we may assume that all K}(O) = 1.

If not, we can introduce a new variable w by

0 0
43
1%
A0 0 K, 0 0 G
v 1
v
0 0
Ks-l

Then we can write (4.20) in the form

(4.21) (I +kgvzv+thv+l :(Ii‘GEV-vaavzvhvv+—kHV;v,
where
gII 0 0
s 0 g,I 0 0
0 0 gs—il

We want to estimate ;vv = Avwv. Multiplying (4. 21) by Av gives us

~ ~

~ ~ ~2~ ~ o, ~ ~
(4.22) (I + kAvplv)wuH = (I + GAV + AVQV)WV + kAvHvFv’ Wy = AO 0"

3

Equation (4.22) is of the same form as (4.1 1). (Observe that Ava = QVAV.)

Therefore, the estimate (4.9) holds and we obtain

l&vngl (lw.] +x max |HF |).

B T
We can now write equation (4.21) as
~ ~ s 2~ ~
= + kP .
(4.23) LA (I + GAV + AUQVAV)WV + kHvFV k ool
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The equation (4.23) is again of the form (4.11).

2
into two parts w [ L] + [ ] where
v , v

b, 24) '-‘J[ l] (I1+GA + A
v+] v v

We split its solution

O

w
V

A Y & f1})
'Av)wv + k vavﬂ, 0 = WO J

. 2 - SRy R 2 g L 2
4.25) w[ ] (I + GA —rAQA)W[ | +kAHA1F, w[ |

v+l v Wop vV ouww W 0
The approximation (4.23) is stable. Therefore we can estimate its
solution by

| <lw. | +kt max [Pv\;.lﬁ
v 0

o

{1 + const. kdtv)lwol + const. kdtv max ’Fl .

1 EV
(4.9) gives us, for (4.25),
w < const. max ~ . < const. max .
l Ezllﬁ k |a~lF | t. k |F. |
0<j<v J 0<j<v

and the estimate (4.20) follows.

We now consider the full system 4.1. Corresponding to our earlier

procedure, we can write the matrix A in the form

11 AIZ A13
A A A
A = 21 22 PASIH falllzlazzlz'--zlam|,
A31 A32 A33

in a neighbourhood It - tol <mn, n>0 of every point to, where A33,
—
i i e
All are the largest submatrices with |kA33| < d3 and |(kA“) | < i

Then there are constants d2], d22 such that
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4. 26 ( < ) < ‘ S
(4.26) d, _kl\(AZZ)i _kaZZA <d

K A ()' v N

-1 -1
4,27 e - 5 - =
(4.27) |A33A3jl§const (1-86), |kA3j[_<_|kA33A33A3ji§const d (L-8), )

-l c .
(4.28) IAZZA jlgconst. (1-5), lkAZjlgconst. g (=8l 1=1¢,2.

2
Without restriction we can also assume that

JkAUI < const. (1 -8), j=2,3.

Otherwise, we apply the transformation

! 12 13
=
g=fo0 I 0 PO e 22 3
Bt B e
0o 0 I

and a simple calculation using (4.27) and (4.28) shows that S—IAS
has the desired property.
Now consider the approximation (4. 6)
[i] [i] (i g B :
(4.28) L B (tv,h)vv ] +k ], L= Ly Paieh
for the subsystems

(4.29) dyt thrdt = A“y[i], fia 1.8, %,

and assume that the estimates (4.20), (4.14) and (4.9) are valid. The

full system can be written in the form (4.29) with

Then stability follows in the same way as earlier from the above estimates

provided 1 - 6 is sufficiently small.

e,




This proves theorem 1.3 for the case that Al~l 1s weakly negative

iominant.

We shall now show that one can always transform A“ so that A;i
has the above property. There is one case for which this is immediately
true.

Lemma 4.6. Let A be negative dominant and assume that

DS ]anl/‘aj)ljn A R L R O

where T >1 is some constant. If

e
T o, o= L2 0

l-o0

=1 4
Then A ls weakly negative dominant with constants

o <2EZ 5 o) I
1o s pGr e e e = G
Proof, Let
0 0
a11

0 a 0 0

2

A = =
0 0 a
nn

Then
K'eptaytasny A tcgrennted=1a).

The norm of C = (Cij) satisfies

=g

lcl <

o

Therefore, we obtain




- Reald  >- Real +- 222 —Los _(Real L)(1 - o)
1 a s fa.. | = a..
11 ! 11

lim 4. | < ltm 2] + 2—=2r < |Real | (p + o)
11 a bla,. | o
i1 1i ii
for the diagonal elements d.. of D. Furthermore, by (4. 30),

11

n
-

L dl ! 1_00 [Real d__ | .

{=p o =1 ii

j#F1 j#1 i

T8 It

< , 1
) lc.. | <70 |Real | <
J?] Qs

le La li(T/’id..j)
j) ii i :
1104

1]

This proves the lemma.

If the diagonal elements of Al ; are all of the same order of magnitude,

. " = :
i.e., T 1is bounded, then we can assume that All is weakly negative

dominant, because, as we have seen, we can make 1 - 6 as small as

we like.

We now consider the case that All contains eigenvalues of different

orders of magnitude and we want to transform All into a block form

which separates these eigenvalues. We need

Lemma 4.7. Let

a“ . . . . . in

By oo AR St o
be a weakly negative dominant matrix and assume that these is a constant

|
t 51 such that Iarrl/larJrl r+l“>‘T

for some r. 1f T(l=58)/(r -1) is sufficiently small then there is a
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transformation S with

= (] - & i
max{ISl, IS l!, <1+ K
? T = ] |
such that
[ ~
' 0
e & o4
3. 3] & S AS »i ’
3 -
\ Rae
ORI I By a AL B
11 Ir 253 105 7 | r+in
“ll . ¢ y AZZ = 2 *
g e o e A LR G e s et d
}rl arr anr+1 nn
matrices
~ Tl-é
A -K
14 2 a3 =
are also weakly negative dominant and Kl’ K2 are universal constants.
Furthermore, the elements of S are analytic functions of
aDQ apq app
(4. 32) 8 e : B 3 SR e e Ui S R L s o e e (R o S o g

ii jJ pp 11 i

Proof. We write A and Z in the form

1 11 12
A=AN+A-47-= + {1l = 5}
: g = Foe
A 0 B 0
” 1 11
A = +(1-9)
0 A, 0 B22

wfiZe




where

0 a. 0 0
A 22
1 "
0 0 a
rr
a 0 0
L ) (e o]
B e 0
g 4 42 r+2
Ay
0 0 a
nn
For S we make an ansatz
9 TIZ
S= I+(1 -8}
0
TZl
Then the relation (4. 31) is equivalent to:
B, +{1- 8B =B B - kl-8)B T =F
g TSR, =B B B S B
Ay s a e s S LR B < ATB T )
1 12 | I 1 | AR 1 222 1 L
B AT AAT A el - T B A B, T B
Pt | 21 PR I | 2T T 222l

Neglecting terms of order (1 - ©)

in the last two equations gives us a

linear system




s

T

1)

which has a unique solution. The elements of are of the form (4. 32)

and its row sums are bounded by T/(7v - 1). Therefore the lemma follows

easily by iteration.
We can now complete the proof of theorem 1.3. Consider the matrix

dll . . . . . dlr

A t) =
”k)

DI T I A oL - .-
rl Er

for a fixed point t = tO' Assume that the ay are ordered such that

(to)li"' la (¢.)] .

la. (t)] > | oty

11Y'o 92

r
Let Ti/ >1 be a constant. We divide the a,, into classes ?7}. by

the following procedure.

a €9 -
b 11 1

: ( 1L/
2) e e®, 48 &S00 en s and e, E P Rr .
Oihes ATkl i=1 j-1 1 -1 1-1/ ij 1

3y 7 does not contain all eigenvalues then there is a last

a €7 with a__ ¢ 7 . 7 is then defined by the first two rules
pei p=l 1 pp 1 2

with a replaced by app. 3
3
This division of the diagonal elements of All into classes at {
g = tO defines a division into classes in a whole neighbourhood 4
|
- < i.e. o 2 ?7.. By assumption
[t t0|_n of tyr e, ajj(t)e i if a”(to)e i y a p

la;jldaj,/dtl are uniformly bounded. If we choose n sufficiently small
)

then the a},j belonging to the same class satisfy the condition of lemma 4. 6.

-Gl




Those belonging to different classes satisfy the condition of lemma 4.7
provided 1 - is sufficientliy small. Repeated use of lemma 4.7 shows

that we can transform A” to blockdiagonal form where every block

satisfies the nditions of lemma 4.6. Furthermore, the transformation S
is such that S :'-l + 1dS/dt! is uniformly bounded. Therefore
theorem 1. 3 follows from lemmata 4.1 and 4.2 and the earlier stability
results.

No new difficulties arise if we consider approximations of type (1.29).

We can again split the matrix A into three parts and it is not difficult

to prove analogs of the lemmata 4.3 - 4.5. Therefore, theorem 1.3 also

holds for approximations of type (1.29).
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